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Stability of multiple pulses in discrete systems
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The stability of multiple-pulse solutions to the discrete nonlinear Stihger equation is considered. A
bound state of widely separated single pulses is rigorously shown to be unstable, unless the phage shift
between adjacent pulses satisfie$= 7r. This instability is accounted for by positive real eigenvalues in the
linearized system. The analysis leading to the instability result does not, however, determine the linear stability
of those multiple pulses for which =7 between adjacent pulses. A direct variational approach for a
two-pulse predicts that it is linearly stable A¢ =, and if the separation between the individual pulses
satisfies a certain condition. The variational approach can easily be generalized to study the staNility of
pulses for anyN=3. The analysis is supplemented with a detailed numerical stabilty analysis.
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I. INTRODUCTION norm of solutions, Weinsteifil7] has shown that the system
possesses a minimizer that is a time-independent solution.
The importance of differential-difference equations Furthermore, he was able to characterize that minimizer in
(DDEs) for modeling various physical phenomena, as well aghe anticontinuum limit i— -+o). These minimizers repre-
their general interest as dynamical systems, has become egent the so-called one-site breathésge Johansson and
dgnt in recent years. A.ubiquitous _DDE is the generalizeqqubry [12] and MacKay and Aubry18]). However, no such
discrete nonlinear Schadinger equation(DNLS) equation;  characterization was given forth=0(1); in particular, the
see, e.g., Refd1,2]. Most relevant for realistic applications structure of the minimizer in the continuum limih{0)
(particularly to nonlinear optigss the DNLS equation with 5"\ nknown. The existence and stability of solutions for

the cubic(Kerr) nonlinearity[ 3-8 smallh was considered by Kapitula and Kevrekifii®]. For
iU+ (1/2) AUy +| Uy 2u, =0, (1.2) smallh it was seen that the DNLS has two pulse solutions,
viz., a stable site-centered one which is approximately given

where the overdot stands for the differentiation in titn, ~ by Un=+2 sechg2hn)e", and an unstable intersite-
are complex variables defined for all integer values of thecentered solution which is roughly ,= 2 secliy2h(n
site indexn, andA, is the second order difference operator +1/2)]e". The instability is accounted for by a positive real
with spacingh: eigenvalue of0(exp(—7?/\/2 h)) for the linearized system.

It should be remarked that this stability result is also given
by Laedkeet al.[1] in the case that the perturbation of the

The DNLS equation was used by Acevesal. [3,4] to ~ WaVveIsS g?rlty preserving. _ _
model the propagation of discrete self-trapped beams in an L€tUn represent a single-humped soliton solution to Eq.
array of linearly coupled nonlinear optical waveguides. Ex-(2-4- From the work of Bounti®t al. [10] it is known that,
perimental results for optical waveguide arrays confirming'f this pulse is construct_ed as a transversal mtersectlon_of
the validity of the model have recently been reported bystable and unstable ma_mlfold_s for the _steadyl:state dynamical
Morandotti et al. [8] and by Eisenbergt al. [5]. It is also System, then there exigtsoliton solutionsU{”. Each of
often used as an envelope equation modeling the local denti€se solutions is realized as a bound statie widely sepa-
turation of the DNA double strank®]. rated copies on}). Furthermore, each bound-state solution
Much theoretical work on the DNLS equation has beenUﬁk) has k different versions, with the number of phase
done concerning the existence of steady state soluteees jumps between adjacent humps, i.e., the number of sign
[10-14,1 and references thergirlin particular, Ref[1] pro-  changes inside the solution, taking all the integer values from
vides existence and stability conditions for solitons in the0 to k—1. Kapitula and Kevrekidi§19] showed that this
DNLS equation with an arbitrary power on-site nonlinearity, transversality condition is satisfied in E@.4) for smallh.
rather than limiting the analysis to the purely cubic case. The The goal in this paper is to determine the stability of these
interested reader should also consult Herjdi§] and Koll-  k solitons for eachk=2. In Sec. Il, a rigorous instability
mannet al. [16] for existence results concerning the driven criterion will be given, showing that a majority of ttesoli-
and damped DNLS. Very recently, by exploiting the fact thattons represent unstable configurations, with the instability
the DNLS is a Hamiltonian system that conserves lthe being induced by real positive eigenvalues in the lin-

A,u,=h"2(uyq+U,_;—2u,), h>0.
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earized problem. In Sec. lll, considerations within the quasi- L 0o 0 -1
continuum approximation fok=2 will show that the bound LW=] Wl 9= 1 ol (2.5
states with alternating signs of the single-humped pulses can 0 L=

indeed be dynz_imlcally sta_ble. Lastly, in Sec. IV we d'SplayWhere the auxiliary operators are defined as
the results of direct numerical computations that corroborate
the analytical predictions. 1
Before continuing, let us note that bound states of soli- L(l‘)qn=§A2qn—qn+ 6(UY)%q,,

tons, in the form of so-called breathers, are also known in the
continuum NLS equation, where they are available as exact 1
solutions produced by the inverse scattering transform, or LOr == A,r,—r,+2(UM)2r,. (2.6
may be obtained perturbative[20,21]. A principal differ- 2
ence from the discrete model, in which static bound states cﬂ is clear that the operatotsl are self-adjoint; hence they
solitons are possible, is that in the continuum model the - .

ach have only a real spectrum. Furthermore, since the

coupled solitons oscillate, periodically passing through eac NLS equation is a Hamiltonian svstem. the eigenvalues of
other. Another difference is that, as we will demonstrate in q (K) . ystem, gen
e full operatorL'® satisfy the restriction that ik is an

the present work, the static bound state of discrete soliton@ —
may be completely stable, essentially due to to the existenc@genvalue then so also arex and = \.
of a finite binding energy, while the bound states of solitons ~Set

in the exactly integrable continuum NLS equation have their
binding energy exactly equal to zefsee Ref[22]); hence
they all are unstable. The method of R€f80,21] has also . ; " :
beeyn generalized to the problem Nfsoliteo{ns aEd their in- %" pEL({)()k) 'SFthlf ngmbtt;r of pﬁsmfv(e; ﬁ;gslnv?lules[zzf the
teraction and analogs with the complex Toda chain hay@Peratort". Foflowing (% wor c()k) riakiset al. [ 25—
been drawn in Refg.23,24. Results for multisoliton com- 28 it 1S known that if|p(L%7) —p(L)[>1 then the solu-
plexes also exist for the damped and driven continuum NLSON U is unstable, and the instability is manifested in the
(see, e.g., Ref25]). Static bound states of solitons may exist presenc((ka) of one or more real positive eigenvalues of the op-
in continuum dissipative models of the Ginzburg-LandauératorL™. Let

type, but consideration of dissipative models is beyond the _ . (K) .
framework of the present work. Ns=number of timedJ” changes sign, (2.9

p(LE)={reo(L¥):x>0}, 2.7

and note that &Ng<k—1. It is easy to check that
II. INSTABILITY RESULT L®OwW®)=0. As a consequence, by applying Sturm-

The DNLS equation can be derived from the Hamiltonianli0UVille theory one gets that

b p(LY) =N,
H=35 nzw (h™2Jun—un 4| *~[un| ) 2D (see Levy and Lessmdi29] on the applicability of Sturm-
Liouville theory to difference equatiopslt is relatively
straightforward to check thdt(!) has at least one positive
eigenvalugfor example, se¢l]). It was shown by Kapitula
f’md Kevrekidis[19] that for h sufficiently smaIIL(f) may

via Un=iﬁH/ﬁUn (the overbar denotes the complex conju-
gate. In addition to the Hamiltonian, another dynamical in-
variant preserved by the equation is the power, or “numbe

of particles,” have at most one other positive eigenvalue. As a conse-
guence of the work of Alexander and Jone®,31 and
+oo Sandsted§32], one concludes that, I is constructed as
P=3 S ul2 (2.2 kwidely separated copies &f{", then there aré& eigenval-
n=-—ow

ues ofL%¥ near each positive eigenvalue lof?, i.e.,

An equation for stationary solutionld, can be derived as p(L(f));k.
dH/gu,—dP/Ju,=0, i.e., . . )
It is thus seen that if & Ng<k—1 then the linear operator
(1/2)A,U,,— U, +|U,|2U,=0. 2.3 L has at least one positive real eigenvalue, and hence the
solution is unstable.

.. (k)
The multibump solutiont)® are then time-independent so- 't should be remarked that the conditiopp(L?)

lutions of —p(LY)|=1 does not necessarily imply that the wave is
linearly stable. The eigenvalue problem can be rewritten as
iup+(1/2)A,un—up+ |un|?u,=0. (2.9 [LYONZ(LYY~1]p=0. (2.9
Linearizing Eq.(2.4) about the stationary solutidd{ pro-  If A, is an eigenvalue for E42.9) with corresponding eigen-
duces a linear operator function pg, then the Krein sign of\, is given by s(\g)
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=—sgr((L®) "1py,po), where(f,g)=='"__f.g,. Under sion (3.3 that a stationary bound state of the two solitons
the assumption thdp(L{Y) —p(L™)|=1, it was shown by must haveiU;,/d(A¢)=0, i.e.,A¢p=0 orA¢=. In Ref.
Grillakis [27] that there are non-negative integersandn;  [35] it has been shown thatreegativeeffective mass corre-
with n,+n,=k—1 such that the operata®) hasn, eigen- sponds to the phase degree of freedom of the two-soliton
values of negative Krein Sign armj Comp|ex eigenva|ues bound state in the continuum apprOXimation. Hence, for such
with nonzero real part. The eigenvalues of negative Kreird negative mass only the maximum of, (i.e., the state
sign are either purely real and positive or purely imaginanpvith A ¢= 1) is potentially stabléin contrast to what would
but structurally unstablelf the eigenvalue is structurally un- be true for a positive magsin accordance with the general
stable, then a small perturbation of the vector field can ejedigorous result obtained in the previous section. Therefore, in
it off the imaginary axis, leading to an unstable eigenvalugvhat follows below we will setA = 7.
with positive real part. Furthermore, if eigenvalues of oppo- The next step is to find a part of the Hamiltonian associ-
site sign collide, then they will generically form a complex ated with the discrete soliton interaction. Unlike the expres-
conjugate pair after the collision, whereas if eigenvalues ofion(3.3), it will actually take the discreteness of the system
the same sign collide, then they will just pass through eacfilto account. The calculation is based on the expression for
other. The interested reader should consult Grillfk& and ~ the Hamiltonian given by Eq(2.1), and makes use of the
Li and Promislow{33,34] for further details and examples. formula
In the case of a two-pulse bound state, which will be
discussed in the next section,|f(L?) — p(L®)|=1, then _
n,+n;=1. Hence, if a linear instability arises it must do so Zx exp(i an)ZZWmZm o(a—2mm), (3.4
through either the appearance of one real pair of eigenvalues, - -
{£\,}, or via a quadruplet of complex eigenvalues with a

nonzero real paff=\.,*\.}. One must do further analysis
to determine if the solution is truly linearly stable.

+ oo + oo

wherea is an arbitrary real parameter. Upon substituting the
approximate soliton shape of E¢3.2) into Eq. (2.1, one
obtains, at the lowest-order approximation in the small pa-

rameteryh,
ll. STABILITY OF TWO SOLITONS
The objective now is to consider the interaction between 87 w? 2
solitons and to determine if there can be stable bound states Hso £)~— 3ne R T h) ¢ (3.9

in the eventNg=k—1, i.e.,, when adjacent fundamental

pulses have alternating signs. This can be done analyticall - . .
in the quasicontinuum approximation, when the pulse is ap.E<I0te that thg coefficient exp(w*/7h) in the expressior3.5
is exponentially smalldue to the assumed smallnesszf.

proximated by the exact one-soliton solution to the con-2.~" . :
tinuum NLS equation. The latter equation is Similar exponentially small terms due to discreteness have
also been recently observed in works by Kevrekidisal.
i g,u+(1/2)d2u+|u|2u=0, (3.1  [36] and by Kapitulaet al. [19,37].
The net effective Hamiltonian for a two-soliton state is

and it is related to Eq.1) by x=hn, h—0. Thus, we adopt the sum of the expressior{8.3) and (3.9, the latter being

the following approximation for the pulse: taken separately for each soliton:
Un=nseclin(hn=dlexdie®], (3.2 H®)=Hof £2) + Hsof £2) + Ui 1 £2)

where is the amplitudey ! is the size{ is the coordinate 1674 2 20 2

for the center, andb(t) = (1/2)7’t+ ¢,, Where g, is an ar- =— e e [{— % COS(FZ)cos(TA§>

bitrary phase constant. The quasicontinuum approximation
assumes thayh<1, i.e., the size of the solitofpulse is +87%exg —279A¢), (3.6)
much larger than the lattice spacing.

We will perform the stability analysis for the cake=2,
i.e., for two widely separated near-identical pulses whos
centers are placed at poirgg,, and whose phase difference

é/vhere we defin\ é=(1/2)(é,—&,) andZ=(1/2) (¢, + &),
which are the separation between the solitons in the bound
. . state, and the coordinate of the bound state’s “center of
is A¢<{0,m}. Al that follows below can easily be general- mass” relative to the underlying lattice. It is clear that the

ized for k=3, although this will not be done here. In the ; i
. : o . above procedure can be generalized to create an effective
guasicontinuum approximation, it is easy to derive an effecy

tive potential of interaction between the solitofsee., e.g., Hamlltc_)nlanH for anyk=3. .
Ref. [35)): Stationary boundary states of the two solitons correspond

to fixed points(FP9 of the Hamiltonian(2.1), which are
; i i (2)) 57 —
U — &, Ad)=—8nexp — _ CodAd). defined by the obvious equationgH'“/9Z=0 and
nl&17 82, 80) 7= 71 Lol cotAd) 3.3 dH®/9AE=0. Because the effective masses corresponding
to the solitons’ coordinates, , are positive[35], the stability
The assumption that the solitons are far separated impliesf these FPs is determined by the standard conditions stating
that 77| &,— &,|>1. It immediately follows from the expres- that the functionH® of the two variableZ and A¢ must
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have a locaminimumat a FP, i.e., the values of the partial IV. NUMERICAL RESULTS
second derivatives dfl(?) at a FP must constitute a positive- . . .
Itis very desirable to compare the above analytical results

definite quadratic form. ith ical ) hi .
It is straightforward to see that there are two types of FPéNlt nhumerica e?(perlments. In this section, we report on
with sin(2zZ/h)=0. One is given b results of simulations of two-pulse bound states whose sepa-
' 9 y ration distance satisfia®>m,,,. It is well known that the
5 ) linearization of the continuum NLS equati¢®. 1) around the
2m ex;{ — W—) sin(Z—WAg) =exp(—27A¢) soliton (3.2) yields four zero eigenvalues, the so-called Gold-
3(yh)* 7h h ’ stone modes. These eigenvalues are a consequence of the
3. translational and rotational symmetries associated with the
Yy

continuum NLS. Notice, however, that here we will use the

and the other one satisfies term Goldstone in particular for eigenvalues that are related
to the continuum problem’s translational invariance symme-

h 2#° m?\ (27 try. When linearizing the DNLS equation around the solution
Z=5, 3(7]h)4exl{ - %> sm( h Af) =—exp(=27A¢). U there will continue to be four eigenvalues near the ori-

gin[19]. Two of these eigenvalues are exactly equal to zero,
due to the rotational invariance associated with the DNLS

Obviously, the bound states corresponding to these two typeduation, while the other two become exponentially small,
of FP can be classified, relative to the underlying lattice, adnirroring the exponentially small splitting of the homoclinic

having their center of mass either site centered on intersit@rb'ts [19,36. It should l:_)e noted that hereafter, by_ conven-
centered, respectively. Additionally, there exists another sef®": SUch modes that bifurcate away from zero will still be
of FPs with cos(2A&/h)=0, but one can immediately check called Goldstone modeteven though the discrete system

that those can never realize a minimum or maximurhi &%. does not respect the continuum symmgtioliowing Ref.

Instead, they are saddle points, and hence always unstab[g’.z]’ it is known that f.or' the two-soliton there are eight ei-
Therefore, they are not considered in what follows below. genvalues near the origin: two equal to zero, four Goldstone

In order to better understand the effect of the separatio nes, and wo more that are close to _the origin_ and of order
distance on the stability of the wave, we sef=mh+ v, {exp(—Cmf’)) for §omeC_>0. These f|nal two eigenvalues
wherem is a positive integer and<9v<h. Continuing the arise from the tail-mediated interaction of the two far-
consideration of the fixed points, we notice that in theseparated solitons.

lowest-order approximation in the small parameér, Egs. Since ':jh_e rtesults pfrtehsented k;y quS'?) andf(3.8)hcan be
(3.7) and (3.8) yield the following minimum separation be- expressed in terms ot the rescalie van_aﬂ;ile rom nere on
tween the solitons in the bound state: we will set »=1 without loss of generality. In order to com-

pute solutions to Eq.1.1), we used the ansatm,(t)
m=m—>(1/2)( 7 nh)2. 39 =exp(t/2)y,(t) and solved the ensuing nonlinear algebraic
min> (1/2)(rl 7h) 39 equations by means of Newton’s method with suitable initial
Fonditions. To perform a stability analysis of the obtained
solutions, we then consider a perturbed solution

(3.9

Beyond this minimum distance, there exists an infinite set o
bound states with larger separatigB§]. Using the fact that
Mmin IS large allows one to see that there are two different
solutions, in which the residual contributiento A¢ is close

to eitherv=0 or v=1/2. This implies that fom sufficiently
large one has\é=mh or Aé=(m+1/2)h. It can then be Wwith v,=a,exp(—iy)+b.expiy). The solution is linearly
checked, upon considering the positive definiteness of thenstable if there is an eigenvalae=iy with Im y#0, and
above-mentioned set of second derivatives of By6) at  linearly stable ify is real. The above ansatz leads to the
each FP, that for FIP3.7) the stable solution corresponds to linearized equations

v=0, whereas for FR3.8) the stable one is witlv="h/2.

un(t) =exp(it/2)[UP+uv,(1)],

Finally, it is natural to enquire as to what the stable two- ya,=—Aza,—2|UP|%a,~a,/2— (UP)%;, (4.1)
pulse looks like. Assume tham=m,,. It is shown in[19]
that a stable one-pulse is site centeré&), (whereas an un- — yby=—Asb,—2|UP|2b, —b,/2— (UP)2a" .
stable one-pulse is intersite center&).(Under the assump- 4.2

tion of the separation distance, it is known that each of the

individual pulses associated with the two-pulse is a smalWe then use Eq4.1) and the complex conjugate of Ed.2)
perturbation of a one-puld&8]. Hence, one can construct a to solve the resulting matrix eigenvalue problem for
two-pulse via the combinatior&sS, SZ, ZS, or ZZ. From the  (y,{a,,b}}). Finally, we complement our stability analysis
work of Sandsted¢32] it is known immediately that any with direct numerical simulations of the system, using a
construction that involveg will be unstable. As a conse- fourth-order explicit Runge-Kutta integrator.

quence, for sufficiently largen the local minimum ofH () In all that follows, we call the two-pulse solution with the
corresponds to a two-pulse of the ty§&, while the saddle phase differenced =0 an up-up soliton and that with
point corresponds to eithélZ or ZS, and the local maximum A ¢= 7 anup-down solitonThe following results have been
is the two-pulseZ?. obtained.
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X FIG. 2. Plot of they's for the up-up configuration at a local

1 maximum of the interaction potential &t=0.5. Shown are two
FIG. 1. Plot of the effective potential as a function of the posi- pairs of the Goldstone-modg's (stars and triangles in the bottom
tion of the first pulse from the cente;=0 for h=0.5 and for the  gypploy, and the the one corresponding to the interaction mode
up-up (top panel and the up-dowrtbottom panel pulse configura-  (circles in the top subplitas a function of the position of the first
tions. The position of the second pulsexis= —x; +h. pulse x;, while x,=—x;+h. Notice that for the eigenvalues
=iv; hence wheny is imaginary(in which case it will be denoted
(1) Neglecting, for the moment, the case of the saddleby the absolute valyethe corresponding mode induces instability.
point configurations, there are four principal possibilities forIn contrast, when all the’s are reakin which case they will appear
the two-pulse solutions. In particular, the numerically com-without absolute valugsthe configuration will be stable. The same
puted interaction potential between fundamental pu|se§0tati0n is followed in Figs. 3-5, below. Note a clear exponential
forming the up-up soliton, and its counterpart for the up-dependence of the interaction-mode frequencyon
down soliton, are displayed in Fig. 1. Since in each case ' .
there are local minima and maxima of the effective potentialCOnCIUde that the only stable configuration among the four

four configurations are possible, whose stability we will Con_possmle ones 1S of the up—dpwn type with a_IocaI. minimum,
sider below: up-up at a local minimum, up-up at a local” full accord with the analytical results obtained in Sec. IIl.

maximum, up-down at a local minimum, and up-down at aIt should also be remarked h_ere_that in QII fOL_Jr cases the
local maximum. absolute value of the of the tail-tail interaction eigenmode

(2) The up-up solitons aralways unstablein agreement C?nhbe dyery cle%rly seen tr? declay exponent!ally asa functlo_nh
with the predictions made in Secs. Il and lll. In this case, theoh t ﬁ |sta_nC(|a et(\:i/ye(_en the pulse gengers, In agreement wit
tail-tail interaction is attractive, inducing an unstable eigen—t e theoretical prediction mentioned above.
mode with y purely imaginary. The behavior of the Gold-

stone eigenvalues is determined by local features of the ef
fective potential. In particular, for a local maximum of the 1078
potential they,'s (the subscripg will be used for Goldstone
eigenmodesare imaginary(see Fig. 2, while in case of the
local minimum case they are re@ee Fig. 3. It should be
stressed here that merely looking at the local picture of the jgsL_ 0o
effective potential could lead to false conclusions in cases

like the one at hand. Even though the existence of a local . ,, . . . .
minimum implies the stability of the Goldstone modes, the oy Y
stability in the full infinite-dimensional system is actually § 8E-051
determined by the unstable tail-tail interaction modes, and2 g 5|
hence turns out to be opposite to that obtained by naivelyT_

107 ; . . .

observing the effective potential. &7 4E-051
(3) On the contrary, the up-down pulsean be linearly 2E_05 . . .
stable. In this case, the repulsive tail-tail interaction induces 7 8 o M 12

an interaction mode with a read Thus, in this case stability
may indeed be based upon observation of the local features gig. 3. ys for the up-up configuration at a local minimum of
of the effective potential. For the case of local maxima, thehe potential. As above, the interaction-mode eigenvalue signals
Yg's are imaginary, signaling the instability of the configu- instability, but the Goldstone’s are real in this caséas necessi-
ration (Fig. 4); however, for the local minima all the's are  tated by the local curvature of the potential barrier near the mini-
real (Fig. 5); hence the configuration is linearly stable. We mum). The notation is the same as in Fig. 2.
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107 . ; ; ; figuration the typical evolution involves oscillations of the
original local maximum configuration around one of a
nearby local minimum, which is chosen according to a
“push” given by the random perturbation added to the initial
conditions.

When the solitons are initially very close, in which case
6 7 P 9 10 11 our theory is not strictly valid but still turns out to be quali-
tatively correct, atypical behavior may occur. In particular,
0.041 . . , - for up-up configurations the attractive interaction may be so
strong that it results in collision between the fundamental
— v v v v pulses, while for the up-down configurations the repulsion of
the solitons, when starting at the first maximum of the po-
0.04r 1 tential in Fig. 1(the one closest tx=0), may result in
eventual separation of the solitof@rresponding to the soli-
0.0395. 7 3 9 10 " ton sliding dovyn the potential curve in Fig).IThis can be

X, seen to occur in Fig. 6.
FG. 4. 75 of h updonn confaton at a ol s, ) 1 fve 50 i exaiined possile conforatons and
The tail mode is now stable, but the instability comes through the, . . .
unstable Goldstone pairs. The notation is the same as in Fig. 2. function of the dlstan(_:e between the fundamental_ puls_es.
Now we turn our attention to the change of the behavior with

(fhe lattice spacing. Obviously, stationary bound states of fun-

In fact, a precursor suggesting the stability of the up-dow ; . X :
configurations under suitable conditions in the DNLS equada@mental pulses exist only in the discrete system, disappear-

tion was the study otwisted localized modereported in |ng-in the conti-nu.um limit. However, as we approach the
[39,40. The locaiized structures studied therein can benticontinuum limit,h—o, there is no reason for the solu-

thought of as a special case of very closely placed up-dowﬂons to disappear. Instead, they fit very naturally into the

pulses. Hence, their stability, identified for sufficiently small @nticontinuum-limit picture set forth by Aubmt al. [12,18).
h in these works, can be put in the same general context aY€ trace this, varying for a specific up-down solution. For
presented herein. largeh, the behavior of the/’s, all of which are real, is quite
(4) In order to observe how the above-mentioned instaSMooth. Eventually, all the's of the localized eigenmodes,
bilities manifest themselves in the dynamics of the full Sys_except fo_r those corr_espondlng to the tail-tail mteractlon,_WlII
tem, we initialize the system at an unstable configuration ang'€"9€ With the continuous spectruphonon band, see Fig.
add a small amount of random noise to the initial condition.”)- This includes the pairs bifurcating from the band edge, as
For an initial up-up configuration, when the solitons are sufWell as the Goldstone paifg1,19. It should be noted that
ficiently far apart a typical evolution results in turning the the possibility of a pair of eigenvalues bifurcating from the
original up-up configuration into an up-down one. The up_edge of the phonon band was shown by Alexand_er and Jones
down pulse then oscillates around a stable minimum of it¢30-31, by Gardner and Zumbry2], and by Kapitula and

interaction potential. In contrast, for an initial up-down con- Kevrekidis[19]. Decreasind, we observe that the configu-
ration initially becomes unstable through the bifurcation of a

0.0405r

Ivg

102 . . . . . pair along the imaginary axi@roundh~0.45), and eventu-
ally for smaller h the branch terminates in a saddle-node
10_:\’0_;\@\ ] bifurcation (at h~0.355). This saddle-node bifurcation is
E consistent with the picture presented by Bousetisl. [10].
>"'10_4_ =00 o® 0\_ (6) For the saddle configurations referred to in Sec. Ill, we
g also used our technique to identify them and study their lin-
10 . ¥ . . . . ear stability. In that case, just as expected, given the nature
7 8 9 10 " (ZS) of the saddle point, one pair ofy's is always imagi-

nary, while the other one is real. The position of the tail-
interaction pair is once again dictated by the up-up or up-

down nature of the configuration in a manner similar to the
0.04061 T previously considered cases. Figure 8 shows the spectral
> plane close to the origin for such a saddle-point configura-

0.0404 ¥ ¥ ¥ ¥ i tion.

0.0402

X V. CONCLUSIONS
FIG. 5. s of the up-down state at a local minimum. All thés As far as we know this is the first piece of analytical work
are real, and the configuration is linearly stable. The notation is théhat deals with the stability of multiple pulses to the DNLS;
same as in Fig. 2. however, there has been a great deal of work concerning the
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x 10
5 T T T T T T
45 .
41 i
35 T
at . FIG. 6. Simulations of an up-down steady
state (with the initial condition perturbed by a
+—25f . small random noisewith two fundamental pulses
placed close to each other. As explained in the
2f . text, this configuration gives rise to eventual
separation of the two solitons.
15F -
1 - -
05 b
040 60 80 100 120 140 160 180

X

stability of such pulses for perturbations of the continuum In this work we have shown that multiple pulses in DNLS
NLS. For example, Cakt al. [43] and Barashenkov and cannot be stable when pulses of the same phase are adjacent
Zemlyanaya[44] discuss the stability of multiple pulses to to each other. Since the criterion used in the proof only pro-
the driven and damped NLS. In particular, in both works thevides a necessary condition for stability, we then restricted
authors use the idea of deriving an effective potential of in-our study to the two-pulse case and used variational methods
teraction between widely separated solitons to determine thi® determine the local extrem@quilibrium point$ of the
stable configurations. Afanasjet al.[45,35 considered the effective energy as a function of the centers of the pulses.
existence and stability of multiple pulses for Ginzburg- Such extrema were shown to exist for configurations where
Landau type perturbations of the continuum Nigso see the multipulse center of mass is centered on a site or between
[46] for existence resuljs sites. Saddle-point configurations have also been identified.
Numerical methods were then used to complement the analy-

0.5
0.05 .
0.45 E
0.04 1
0.4 . °
0.03} J
0.35 .
0.02} 4
0.3 i
0.01F 4
>0.25 E
>~ 0f o o o o o B
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-0.01f 4
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-0.02F J
0.1 _
-0.03F J
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-0.04 ° 1
0 faY o o] o (o] @ o [0} ol Q
0.6 0.8 1 1.2 1.4 )
-0.05
h ~0.05 0 0.05

Y

FIG. 7. Trajectories of the localized eigenmodes’ eigenvalues as '
a function of the lattice spacirtyfor large values oh for which the FIG. 8. A plot of the spectral planey(,y;) for the case of a
local minimum up-down configuration is linearly stable. The circlessaddle up-down configuration. The real tail-mode eigenvalue is
indicate the tail-interaction eigenvalues, the stars and pl(ass  closest to the origirithere are two zero frequencies existing due to
dotted and solid lines, respectivelhow the frequencies of the two the system’s symmetries, as mentioned in the)t&xhe pair of the
Goldstone-mode pairs, while the up and down triangléash-  Goldstone modes is stab{@ has real eigenvalugswhile, due to
dotted and dashed lines, respectiyahdicate the frequencies of the the saddle nature of the configuration, the second pair of Goldstone
modes bifurcating from the phonon band edge. The band edge migenvalues is imaginary, justifying the theoretically shown insta-
shown by the horizontal solid line at =0.5. bility of such a configuratiorisee the text
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sis and in fact to demonstrate that linearly stable two-pulseeal positive eigenvalue or a quadruplet of complex eigen-
configurations are possible, when there is a change of phasmlues with a nonzero real part. However, the numerical
between the pulses and an appropriatable effectiveequi-  simulations indicate that the second scenario does not occur
librium condition is satisfied. for widely separated pulses. Work aiming to explain this
It is important to construct a rigorous and more generafeature is currently in progress.
theoretical framework for the calculations presented in Sec.
[ll. It is an interesting open problem to determine when, and
under what conditions, the effective Hamiltonian will yield
the correct result. This problem has recently been considered T.K. was partially supported by the National Science
by Kapitula[47] for the case of single pulses. It is anticipated Foundation under Grant No. DMS-98-03408. P.K. would
that, when considering the interaction of widely separatedike to thank the Theoretical Division and the Center for
primary pulses, the theory presented4it] can be extended. NonLinear Studies of the Los Alamos National Laboratory
Research into this question is currently in progress. for their hospitality during the period of completion of this
Furthermore, one needs a rigorous theory to explain thavork. B.M. appreciates support from the European Office of
numerical observations presented in Sec. IV. For example, ithe U.S. Air Force for Research and Development through
Sec. Il it was shown that the instability for the up-down the program “Windows on Science.” We would also like to
solution could arise through the presence of either a purelyhank A. Aceves for a very useful discussion.
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