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Stability of multiple pulses in discrete systems
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The stability of multiple-pulse solutions to the discrete nonlinear Schro¨dinger equation is considered. A
bound state of widely separated single pulses is rigorously shown to be unstable, unless the phase shiftDf
between adjacent pulses satisfiesDf5p. This instability is accounted for by positive real eigenvalues in the
linearized system. The analysis leading to the instability result does not, however, determine the linear stability
of those multiple pulses for whichDf5p between adjacent pulses. A direct variational approach for a
two-pulse predicts that it is linearly stable ifDf5p, and if the separation between the individual pulses
satisfies a certain condition. The variational approach can easily be generalized to study the stability ofN
pulses for anyN>3. The analysis is supplemented with a detailed numerical stabilty analysis.
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I. INTRODUCTION

The importance of differential-difference equatio
~DDEs! for modeling various physical phenomena, as well
their general interest as dynamical systems, has become
dent in recent years. A ubiquitous DDE is the generaliz
discrete nonlinear Schro¨dinger equation~DNLS! equation;
see, e.g., Refs.@1,2#. Most relevant for realistic application
~particularly to nonlinear optics! is the DNLS equation with
the cubic~Kerr! nonlinearity@3–8#:

i u̇n1~1/2!D2un1uunu2un50, ~1.1!

where the overdot stands for the differentiation in timet, un
are complex variables defined for all integer values of
site indexn, andD2 is the second order difference operat
with spacingh:

D2un5h22~un111un2122un!, h.0.

The DNLS equation was used by Aceveset al. @3,4# to
model the propagation of discrete self-trapped beams in
array of linearly coupled nonlinear optical waveguides. E
perimental results for optical waveguide arrays confirm
the validity of the model have recently been reported
Morandotti et al. @8# and by Eisenberget al. @5#. It is also
often used as an envelope equation modeling the local d
turation of the DNA double strand@9#.

Much theoretical work on the DNLS equation has be
done concerning the existence of steady state solutions~see
@10–14,1# and references therein!. In particular, Ref.@1# pro-
vides existence and stability conditions for solitons in t
DNLS equation with an arbitrary power on-site nonlineari
rather than limiting the analysis to the purely cubic case. T
interested reader should also consult Hennig@15# and Koll-
mannet al. @16# for existence results concerning the driv
and damped DNLS. Very recently, by exploiting the fact th
the DNLS is a Hamiltonian system that conserves thel 2
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norm of solutions, Weinstein@17# has shown that the system
possesses a minimizer that is a time-independent solu
Furthermore, he was able to characterize that minimize
the anticontinuum limit (h→1`). These minimizers repre
sent the so-called one-site breathers~see Johansson an
Aubry @12# and MacKay and Aubry@18#!. However, no such
characterization was given for 0,h;

,O(1); in particular, the
structure of the minimizer in the continuum limit (h→0)
was unknown. The existence and stability of solutions
smallh was considered by Kapitula and Kevrekidis@19#. For
small h it was seen that the DNLS has two pulse solutio
viz., a stable site-centered one which is approximately gi
by Un5A2 sech(A2hn)eit , and an unstable intersite
centered solution which is roughlyUn5A2 sech@A2h(n
11/2)#eit . The instability is accounted for by a positive re
eigenvalue ofO„exp(2p2/A2 h)… for the linearized system
It should be remarked that this stability result is also giv
by Laedkeet al. @1# in the case that the perturbation of th
wave is parity preserving.

Let Un
(1) represent a single-humped soliton solution to E

~2.4!. From the work of Bountiset al. @10# it is known that,
if this pulse is constructed as a transversal intersection
stable and unstable manifolds for the steady-state dynam
system, then there existk-soliton solutionsUn

(k) . Each of
these solutions is realized as a bound state ofk widely sepa-
rated copies ofUn

(1) . Furthermore, each bound-state soluti
Un

(k) has k different versions, with the number of phas
jumps between adjacent humps, i.e., the number of s
changes inside the solution, taking all the integer values fr
0 to k21. Kapitula and Kevrekidis@19# showed that this
transversality condition is satisfied in Eq.~2.4! for small h.

The goal in this paper is to determine the stability of the
k solitons for eachk>2. In Sec. II, a rigorous instability
criterion will be given, showing that a majority of thek soli-
tons represent unstable configurations, with the instab
being induced by real positive eigenvalues in the l
©2001 The American Physical Society04-1
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earized problem. In Sec. III, considerations within the qua
continuum approximation fork52 will show that the bound
states with alternating signs of the single-humped pulses
indeed be dynamically stable. Lastly, in Sec. IV we disp
the results of direct numerical computations that corrobo
the analytical predictions.

Before continuing, let us note that bound states of s
tons, in the form of so-called breathers, are also known in
continuum NLS equation, where they are available as ex
solutions produced by the inverse scattering transform
may be obtained perturbatively@20,21#. A principal differ-
ence from the discrete model, in which static bound state
solitons are possible, is that in the continuum model
coupled solitons oscillate, periodically passing through e
other. Another difference is that, as we will demonstrate
the present work, the static bound state of discrete solit
may be completely stable, essentially due to to the existe
of a finite binding energy, while the bound states of solito
in the exactly integrable continuum NLS equation have th
binding energy exactly equal to zero~see Ref.@22#!; hence
they all are unstable. The method of Refs.@20,21# has also
been generalized to the problem ofN-solitons and their in-
teraction and analogs with the complex Toda chain h
been drawn in Refs.@23,24#. Results for multisoliton com-
plexes also exist for the damped and driven continuum N
~see, e.g., Ref.@25#!. Static bound states of solitons may ex
in continuum dissipative models of the Ginzburg-Land
type, but consideration of dissipative models is beyond
framework of the present work.

II. INSTABILITY RESULT

The DNLS equation can be derived from the Hamiltoni

H5
1

2 (
n52`

1`

~h22uun2un21u22uunu4! ~2.1!

via u̇n5 i ]H/]ūn ~the overbar denotes the complex con
gate!. In addition to the Hamiltonian, another dynamical i
variant preserved by the equation is the power, or ‘‘num
of particles,’’

P5
1

2 (
n52`

1`

uunu2. ~2.2!

An equation for stationary solutionsUn can be derived as
]H/]ūn2]P/]ūn50, i.e.,

~1/2!D2Un2Un1uUnu2Un50. ~2.3!

The multibump solutionsUn
(k) are then time-independent so

lutions of

i u̇n1~1/2!D2un2un1uunu2un50. ~2.4!

Linearizing Eq.~2.4! about the stationary solutionUn
(k) pro-

duces a linear operator
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L (k)5JFL1
(k) 0

0 L2
(k)G , J5F0 21

1 0G , ~2.5!

where the auxiliary operators are defined as

L1
(k)qn5

1

2
D2qn2qn16~Un

(k)!2qn ,

L2
(k)r n5

1

2
D2r n2r n12~Un

(k)!2r n . ~2.6!

It is clear that the operatorsL6
(k) are self-adjoint; hence the

each have only a real spectrum. Furthermore, since
DNLS equation is a Hamiltonian system, the eigenvalues
the full operatorL (k) satisfy the restriction that ifl is an
eigenvalue then so also are2l and6l̄.

Set

p~L6
(k)!5$lPs~L6

(k)!:l.0%, ~2.7!

i.e., p(L6
(k)) is the number of positive eigenvalues of th

operatorL6
(k) . Following the work of Grillakiset al. @26–

28#, it is known that ifup(L1
(k))2p(L2

(k))u.1 then the solu-
tion Un

(k) is unstable, and the instability is manifested in t
presence of one or more real positive eigenvalues of the
eratorL (k). Let

Ns5number of timesUn
(k) changes sign, ~2.8!

and note that 0<Ns<k21. It is easy to check tha
L2

(k)(Un
(k))50. As a consequence, by applying Sturm

Liouville theory one gets that

p~L2
(k)!5Ns

~see Levy and Lessman@29# on the applicability of Sturm-
Liouville theory to difference equations!. It is relatively
straightforward to check thatL1

(1) has at least one positiv
eigenvalue~for example, see@1#!. It was shown by Kapitula
and Kevrekidis@19# that for h sufficiently smallL1

(1) may
have at most one other positive eigenvalue. As a con
quence of the work of Alexander and Jones@30,31# and
Sandstede@32#, one concludes that, ifUn

(k) is constructed as
k widely separated copies ofUn

(1) , then there arek eigenval-
ues ofL1

(k) near each positive eigenvalue ofL1
(1) , i.e.,

p~L1
(k)!>k.

It is thus seen that if 0<Ns,k21 then the linear operato
L (k) has at least one positive real eigenvalue, and hence
solution is unstable.

It should be remarked that the conditionup(L1
(k))

2p(L2
(k))u51 does not necessarily imply that the wave

linearly stable. The eigenvalue problem can be rewritten

@L2
(k)l2~L1

(k)!21#p50. ~2.9!

If l0 is an eigenvalue for Eq.~2.9! with corresponding eigen
function p0, then the Krein sign ofl0 is given by s(l0)
4-2
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52sgn̂ (L1
(k))21p0 ,p0&, where^ f ,g&5(n52`

1` f ngn . Under
the assumption thatup(L1

(k))2p(L2
(k))u51, it was shown by

Grillakis @27# that there are non-negative integersnr andni
with nr1ni5k21 such that the operatorL (k) hasnr eigen-
values of negative Krein sign andni complex eigenvalues
with nonzero real part. The eigenvalues of negative Kr
sign are either purely real and positive or purely imagin
but structurally unstable. If the eigenvalue is structurally un
stable, then a small perturbation of the vector field can e
it off the imaginary axis, leading to an unstable eigenva
with positive real part. Furthermore, if eigenvalues of opp
site sign collide, then they will generically form a comple
conjugate pair after the collision, whereas if eigenvalues
the same sign collide, then they will just pass through e
other. The interested reader should consult Grillakis@27# and
Li and Promislow@33,34# for further details and examples

In the case of a two-pulse bound state, which will
discussed in the next section, ifup(L1

(2))2p(L2
(2))u51, then

nr1ni51. Hence, if a linear instability arises it must do
through either the appearance of one real pair of eigenval
$6l r%, or via a quadruplet of complex eigenvalues with
nonzero real part$6lc ,6l̄c%. One must do further analysi
to determine if the solution is truly linearly stable.

III. STABILITY OF TWO SOLITONS

The objective now is to consider the interaction betwe
solitons and to determine if there can be stable bound st
in the event Ns5k21, i.e., when adjacent fundament
pulses have alternating signs. This can be done analytic
in the quasicontinuum approximation, when the pulse is
proximated by the exact one-soliton solution to the co
tinuum NLS equation. The latter equation is

i ] tu1~1/2!]x
2u1uuu2u50, ~3.1!

and it is related to Eq.~1.1! by x[hn, h→0. Thus, we adopt
the following approximation for the pulse:

un5h sech@h~hn2j!#exp@ if~ t !#, ~3.2!

whereh is the amplitude,h21 is the size,j is the coordinate
for the center, andf(t)5(1/2)h2t1f0, wheref0 is an ar-
bitrary phase constant. The quasicontinuum approxima
assumes thathh!1, i.e., the size of the soliton~pulse! is
much larger than the lattice spacing.

We will perform the stability analysis for the casek52,
i.e., for two widely separated near-identical pulses wh
centers are placed at pointsj1,2, and whose phase differenc
is DfP$0,p%. All that follows below can easily be genera
ized for k>3, although this will not be done here. In th
quasicontinuum approximation, it is easy to derive an eff
tive potential of interaction between the solitons~see., e.g.,
Ref. @35#!:

U int~j12j2 ,Df!528h3exp~2huj12j2u!cos~Df!.
~3.3!

The assumption that the solitons are far separated imp
that huj12j2u@1. It immediately follows from the expres
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sion ~3.3! that a stationary bound state of the two solito
must have]U int /](Df)50, i.e.,Df50 or Df5p. In Ref.
@35# it has been shown that anegativeeffective mass corre-
sponds to the phase degree of freedom of the two-sol
bound state in the continuum approximation. Hence, for s
a negative mass only the maximum ofU int ~i.e., the state
with Df5p) is potentially stable~in contrast to what would
be true for a positive mass!, in accordance with the genera
rigorous result obtained in the previous section. Therefore
what follows below we will setDf5p.

The next step is to find a part of the Hamiltonian asso
ated with the discrete soliton interaction. Unlike the expr
sion ~3.3!, it will actually take the discreteness of the syste
into account. The calculation is based on the expression
the Hamiltonian given by Eq.~2.1!, and makes use of the
formula

(
n52`

1`

exp~ ian!52p (
m52`

1`

d~a22pm!, ~3.4!

wherea is an arbitrary real parameter. Upon substituting t
approximate soliton shape of Eq.~3.2! into Eq. ~2.1!, one
obtains, at the lowest-order approximation in the small
rameterhh,

Hsol~j!'2
8p4

3h3
expS 2

p2

hhD cosS 2p

h
j D . ~3.5!

Note that the coefficient exp(2p2/hh) in the expression~3.5!
is exponentially small, due to the assumed smallness ofhh.
Similar exponentially small terms due to discreteness h
also been recently observed in works by Kevrekidiset al.
@36# and by Kapitulaet al. @19,37#.

The net effective Hamiltonian for a two-soliton state
the sum of the expressions~3.3! and ~3.5!, the latter being
taken separately for each soliton:

H (2)5Hsol~j1!1Hsol~j2!1U int~j12j2!

52
16p4

3h3
expS 2

p2

hhD cosS 2p

h
ZD cosS 2p

h
Dj D

18h3exp~22hDj!, ~3.6!

where we defineDj[(1/2)(j12j2) andZ[(1/2)(j11j2),
which are the separation between the solitons in the bo
state, and the coordinate of the bound state’s ‘‘center
mass’’ relative to the underlying lattice. It is clear that th
above procedure can be generalized to create an effe
HamiltonianH (k) for any k>3.

Stationary boundary states of the two solitons corresp
to fixed points~FPs! of the Hamiltonian~2.1!, which are
defined by the obvious equations]H (2)/]Z50 and
]H (2)/]Dj50. Because the effective masses correspond
to the solitons’ coordinatesj1,2 are positive@35#, the stability
of these FPs is determined by the standard conditions sta
that the functionH (2) of the two variablesZ and Dj must
4-3
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have a localminimumat a FP, i.e., the values of the parti
second derivatives ofH (2) at a FP must constitute a positive
definite quadratic form.

It is straightforward to see that there are two types of F
with sin(2pZ/h)50. One is given by

Z50,
2p5

3~hh!4
expS 2

p2

hhD sinS 2p

h
Dj D5exp~22hDj!,

~3.7!

and the other one satisfies

Z5
h

2
,

2p5

3~hh!4
expS 2

p2

hhD sinS 2p

h
Dj D52exp(22hDj).

~3.8!

Obviously, the bound states corresponding to these two ty
of FP can be classified, relative to the underlying lattice,
having their center of mass either site centered on inter
centered, respectively. Additionally, there exists another
of FPs with cos(2pDj/h)50, but one can immediately chec
that those can never realize a minimum or maximum ofH (2).
Instead, they are saddle points, and hence always unst
Therefore, they are not considered in what follows below

In order to better understand the effect of the separa
distance on the stability of the wave, we setDj5mh1n,
wherem is a positive integer and 0<n,h. Continuing the
consideration of the fixed points, we notice that in t
lowest-order approximation in the small parameterhh, Eqs.
~3.7! and ~3.8! yield the following minimum separation be
tween the solitons in the bound state:

m>mmin.~1/2!~p/hh!2. ~3.9!

Beyond this minimum distance, there exists an infinite se
bound states with larger separations@35#. Using the fact that
mmin is large allows one to see that there are two differ
solutions, in which the residual contributionn to Dj is close
to eithern50 or n51/2. This implies that form sufficiently
large one hasDj5mh or Dj5(m11/2)h. It can then be
checked, upon considering the positive definiteness of
above-mentioned set of second derivatives of Eq.~3.6! at
each FP, that for FP~3.7! the stable solution corresponds
n50, whereas for FP~3.8! the stable one is withn5h/2.

Finally, it is natural to enquire as to what the stable tw
pulse looks like. Assume thatm@mmin . It is shown in@19#
that a stable one-pulse is site centered (S), whereas an un-
stable one-pulse is intersite centered (I). Under the assump
tion of the separation distance, it is known that each of
individual pulses associated with the two-pulse is a sm
perturbation of a one-pulse@38#. Hence, one can construct
two-pulse via the combinationsSS, SI, IS, or II. From the
work of Sandstede@32# it is known immediately that any
construction that involvesI will be unstable. As a conse
quence, for sufficiently largem the local minimum ofH (2)

corresponds to a two-pulse of the typeSS, while the saddle
point corresponds to eitherSI or IS, and the local maximum
is the two-pulseII.
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IV. NUMERICAL RESULTS

It is very desirable to compare the above analytical res
with numerical experiments. In this section, we report
results of simulations of two-pulse bound states whose se
ration distance satisfiesm.mmin . It is well known that the
linearization of the continuum NLS equation~3.1! around the
soliton~3.2! yields four zero eigenvalues, the so-called Go
stone modes. These eigenvalues are a consequence o
translational and rotational symmetries associated with
continuum NLS. Notice, however, that here we will use t
term Goldstone in particular for eigenvalues that are rela
to the continuum problem’s translational invariance symm
try. When linearizing the DNLS equation around the soluti
Un

(1) there will continue to be four eigenvalues near the o
gin @19#. Two of these eigenvalues are exactly equal to ze
due to the rotational invariance associated with the DN
equation, while the other two become exponentially sm
mirroring the exponentially small splitting of the homoclin
orbits @19,36#. It should be noted that hereafter, by conve
tion, such modes that bifurcate away from zero will still b
called Goldstone modes~even though the discrete syste
does not respect the continuum symmetry!. Following Ref.
@32#, it is known that for the two-soliton there are eight e
genvalues near the origin: two equal to zero, four Goldsto
ones, and two more that are close to the origin and of or
O„exp(2Cmh)… for someC.0. These final two eigenvalue
arise from the tail-mediated interaction of the two fa
separated solitons.

Since the results presented by Eqs.~3.7! and~3.8! can be
expressed in terms of the rescaled variablehh, from here on
we will seth51 without loss of generality. In order to com
pute solutions to Eq.~1.1!, we used the ansatzun(t)
5exp(it/2)cn(t) and solved the ensuing nonlinear algebra
equations by means of Newton’s method with suitable ini
conditions. To perform a stability analysis of the obtain
solutions, we then consider a perturbed solution

un~ t !5exp~ i t /2!@Un
(2)1vn~ t !#,

with vn5anexp(2igt)1bnexp(igt). The solution is linearly
unstable if there is an eigenvaluel5 ig with Im gÞ0, and
linearly stable ifg is real. The above ansatz leads to t
linearized equations

gan52D2an22uUn
(2)u2an2an/22~Un

(2)!2bn
! , ~4.1!

2gbn52D2bn22uUn
(2)u2bn2bn/22~Un

(2)!2an
! .

~4.2!

We then use Eq.~4.1! and the complex conjugate of Eq.~4.2!
to solve the resulting matrix eigenvalue problem f
(g,$an ,bn

!%). Finally, we complement our stability analys
with direct numerical simulations of the system, using
fourth-order explicit Runge-Kutta integrator.

In all that follows, we call the two-pulse solution with th
phase differenceDf50 an up-up soliton, and that with
Df5p anup-down soliton. The following results have bee
obtained.
4-4
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~1! Neglecting, for the moment, the case of the sadd
point configurations, there are four principal possibilities
the two-pulse solutions. In particular, the numerically co
puted interaction potential between fundamental pul
forming the up-up soliton, and its counterpart for the u
down soliton, are displayed in Fig. 1. Since in each c
there are local minima and maxima of the effective potent
four configurations are possible, whose stability we will co
sider below: up-up at a local minimum, up-up at a loc
maximum, up-down at a local minimum, and up-down a
local maximum.

~2! The up-up solitons arealways unstable, in agreement
with the predictions made in Secs. II and III. In this case,
tail-tail interaction is attractive, inducing an unstable eige
mode withg purely imaginary. The behavior of the Gold
stone eigenvalues is determined by local features of the
fective potential. In particular, for a local maximum of th
potential thegg’s ~the subscriptg will be used for Goldstone
eigenmodes! are imaginary~see Fig. 2!, while in case of the
local minimum case they are real~see Fig. 3!. It should be
stressed here that merely looking at the local picture of
effective potential could lead to false conclusions in ca
like the one at hand. Even though the existence of a lo
minimum implies the stability of the Goldstone modes, t
stability in the full infinite-dimensional system is actual
determined by the unstable tail-tail interaction modes, a
hence turns out to be opposite to that obtained by naiv
observing the effective potential.

~3! On the contrary, the up-down pulsescan be linearly
stable. In this case, the repulsive tail-tail interaction indu
an interaction mode with a realg. Thus, in this case stability
may indeed be based upon observation of the local feat
of the effective potential. For the case of local maxima,
gg’s are imaginary, signaling the instability of the config
ration ~Fig. 4!; however, for the local minima all theg ’s are
real ~Fig. 5!; hence the configuration is linearly stable. W

FIG. 1. Plot of the effective potential as a function of the po
tion of the first pulse from the centerx150 for h50.5 and for the
up-up~top panel! and the up-down~bottom panel! pulse configura-
tions. The position of the second pulse isx252x11h.
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conclude that the only stable configuration among the f
possible ones is of the up-down type with a local minimu
in full accord with the analytical results obtained in Sec. I
It should also be remarked here that in all four cases
absolute value of theg of the tail-tail interaction eigenmode
can be very clearly seen to decay exponentially as a func
of the distance between the pulse centers, in agreement
the theoretical prediction mentioned above.

-

FIG. 2. Plot of theg ’s for the up-up configuration at a loca
maximum of the interaction potential ath50.5. Shown are two
pairs of the Goldstone-modeg ’s ~stars and triangles in the bottom
subplot!, and the the one corresponding to the interaction mo
~circles in the top subplot!, as a function of the position of the firs
pulse x1, while x252x11h. Notice that for the eigenvaluesl
5 ig; hence wheng is imaginary~in which case it will be denoted
by the absolute value!, the corresponding mode induces instabilit
In contrast, when all theg ’s are real~in which case they will appea
without absolute values!, the configuration will be stable. The sam
notation is followed in Figs. 3–5, below. Note a clear exponen
dependence of the interaction-mode frequency onx1.

FIG. 3. g’s for the up-up configuration at a local minimum o
the potential. As above, the interaction-mode eigenvalue sig
instability, but the Goldstoneg’s are real in this case~as necessi-
tated by the local curvature of the potential barrier near the m
mum!. The notation is the same as in Fig. 2.
4-5
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In fact, a precursor suggesting the stability of the up-do
configurations under suitable conditions in the DNLS eq
tion was the study oftwisted localized modesreported in
@39,40#. The localized structures studied therein can
thought of as a special case of very closely placed up-do
pulses. Hence, their stability, identified for sufficiently sm
h in these works, can be put in the same general contex
presented herein.

~4! In order to observe how the above-mentioned ins
bilities manifest themselves in the dynamics of the full s
tem, we initialize the system at an unstable configuration
add a small amount of random noise to the initial conditio
For an initial up-up configuration, when the solitons are s
ficiently far apart a typical evolution results in turning th
original up-up configuration into an up-down one. The u
down pulse then oscillates around a stable minimum of
interaction potential. In contrast, for an initial up-down co

FIG. 4. g’s of the up-down configuration at a local maximum
The tail mode is now stable, but the instability comes through
unstable Goldstone pairs. The notation is the same as in Fig. 2

FIG. 5. g’s of the up-down state at a local minimum. All theg’s
are real, and the configuration is linearly stable. The notation is
same as in Fig. 2.
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figuration the typical evolution involves oscillations of th
original local maximum configuration around one of
nearby local minimum, which is chosen according to
‘‘push’’ given by the random perturbation added to the init
conditions.

When the solitons are initially very close, in which ca
our theory is not strictly valid but still turns out to be qua
tatively correct, atypical behavior may occur. In particula
for up-up configurations the attractive interaction may be
strong that it results in collision between the fundamen
pulses, while for the up-down configurations the repulsion
the solitons, when starting at the first maximum of the p
tential in Fig. 1 ~the one closest tox50), may result in
eventual separation of the solitons~corresponding to the soli
ton sliding down the potential curve in Fig. 1!. This can be
seen to occur in Fig. 6.

~5! We have so far examined possible configurations a
their stability, as well as the variation of this behavior as
function of the distance between the fundamental puls
Now we turn our attention to the change of the behavior w
the lattice spacing. Obviously, stationary bound states of f
damental pulses exist only in the discrete system, disapp
ing in the continuum limit. However, as we approach t
anticontinuum limit,h→`, there is no reason for the solu
tions to disappear. Instead, they fit very naturally into t
anticontinuum-limit picture set forth by Aubryet al. @12,18#.
We trace this, varyingh for a specific up-down solution. Fo
largeh, the behavior of theg ’s, all of which are real, is quite
smooth. Eventually, all theg ’s of the localized eigenmodes
except for those corresponding to the tail-tail interaction, w
merge with the continuous spectrum~phonon band, see Fig
7!. This includes the pairs bifurcating from the band edge
well as the Goldstone pairs@41,19#. It should be noted tha
the possibility of a pair of eigenvalues bifurcating from th
edge of the phonon band was shown by Alexander and Jo
@30,31#, by Gardner and Zumbrun@42#, and by Kapitula and
Kevrekidis @19#. Decreasingh, we observe that the configu
ration initially becomes unstable through the bifurcation o
pair along the imaginary axis~aroundh'0.45), and eventu-
ally for smaller h the branch terminates in a saddle-no
bifurcation ~at h'0.355). This saddle-node bifurcation
consistent with the picture presented by Bountiset al. @10#.

~6! For the saddle configurations referred to in Sec. III,
also used our technique to identify them and study their
ear stability. In that case, just as expected, given the na
(IS) of the saddle point, one pair ofgg’s is always imagi-
nary, while the other one is real. The position of the ta
interaction pair is once again dictated by the up-up or
down nature of the configuration in a manner similar to t
previously considered cases. Figure 8 shows the spe
plane close to the origin for such a saddle-point configu
tion.

V. CONCLUSIONS

As far as we know this is the first piece of analytical wo
that deals with the stability of multiple pulses to the DNL
however, there has been a great deal of work concerning

e

e
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FIG. 6. Simulations of an up-down stead
state ~with the initial condition perturbed by a
small random noise! with two fundamental pulses
placed close to each other. As explained in t
text, this configuration gives rise to eventu
separation of the two solitons.
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stability of such pulses for perturbations of the continuu
NLS. For example, Caiet al. @43# and Barashenkov an
Zemlyanaya@44# discuss the stability of multiple pulses t
the driven and damped NLS. In particular, in both works
authors use the idea of deriving an effective potential of
teraction between widely separated solitons to determine
stable configurations. Afanasjevet al. @45,35# considered the
existence and stability of multiple pulses for Ginzbur
Landau type perturbations of the continuum NLS~also see
@46# for existence results!.

FIG. 7. Trajectories of the localized eigenmodes’ eigenvalue
a function of the lattice spacingh for large values ofh for which the
local minimum up-down configuration is linearly stable. The circ
indicate the tail-interaction eigenvalues, the stars and pluses~also
dotted and solid lines, respectively! show the frequencies of the tw
Goldstone-mode pairs, while the up and down triangles~dash-
dotted and dashed lines, respectively! indicate the frequencies of th
modes bifurcating from the phonon band edge. The band edg
shown by the horizontal solid line atg r50.5.
03660
e
-
he

In this work we have shown that multiple pulses in DNL
cannot be stable when pulses of the same phase are adj
to each other. Since the criterion used in the proof only p
vides a necessary condition for stability, we then restric
our study to the two-pulse case and used variational meth
to determine the local extrema~equilibrium points! of the
effective energy as a function of the centers of the puls
Such extrema were shown to exist for configurations wh
the multipulse center of mass is centered on a site or betw
sites. Saddle-point configurations have also been identifi
Numerical methods were then used to complement the an

s

is

FIG. 8. A plot of the spectral plane (g r ,g i) for the case of a
saddle up-down configuration. The real tail-mode eigenvalue
closest to the origin~there are two zero frequencies existing due
the system’s symmetries, as mentioned in the text!. One pair of the
Goldstone modes is stable~it has real eigenvalues!, while, due to
the saddle nature of the configuration, the second pair of Golds
eigenvalues is imaginary, justifying the theoretically shown ins
bility of such a configuration~see the text!.
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sis and in fact to demonstrate that linearly stable two-pu
configurations are possible, when there is a change of p
between the pulses and an appropriate~stable effective! equi-
librium condition is satisfied.

It is important to construct a rigorous and more gene
theoretical framework for the calculations presented in S
III. It is an interesting open problem to determine when, a
under what conditions, the effective Hamiltonian will yie
the correct result. This problem has recently been consid
by Kapitula@47# for the case of single pulses. It is anticipat
that, when considering the interaction of widely separa
primary pulses, the theory presented in@47# can be extended
Research into this question is currently in progress.

Furthermore, one needs a rigorous theory to explain
numerical observations presented in Sec. IV. For example
Sec. II it was shown that the instability for the up-dow
solution could arise through the presence of either a pu
re

tt.

J

e

Y

n

E

s.

s.
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real positive eigenvalue or a quadruplet of complex eig
values with a nonzero real part. However, the numeri
simulations indicate that the second scenario does not o
for widely separated pulses. Work aiming to explain th
feature is currently in progress.
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